myopic topology - definizione. Che cos'è myopic topology
DICLIB.COM
Strumenti linguistici IA
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole da parte dell'intelligenza artificiale

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è myopic topology - definizione

COMPARISON OF TOPOLOGIES INDUCED BY THE PARTIAL ORDERING ON TOPOLOGIES ON ANY GIVEN SET
Coarser topology; Finest topology; Coarsest topology; Finer topology; Comparsion of topologies; Weaker topology; Lattice of topologies; Stronger topology; Coarser (topology)

Trivial topology         
TOPOLOGY WHERE THE ONLY OPEN SETS ARE THE EMPTY SET AND THE ENTIRE SPACE
Indiscrete topology; Indiscrete space; Codiscrete topology
In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete.
Computational topology         
SUBFIELD OF TOPOLOGY WITH AN OVERLAP WITH AREAS OF COMPUTER SCIENCE
Algorithmic topology
Algorithmic topology, or computational topology, is a subfield of topology with an overlap with areas of computer science, in particular, computational geometry and computational complexity theory.
Étale topology         
GROTHENDIECK TOPOLOGY ON THE CATEGORY OF SCHEMES, WHOSE COVERING FAMILIES ARE JOINTLY SURJECTIVE FAMILIES OF ÉTALE MORPHISMS
Etale topology; Étale sheaf
In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use.

Wikipedia

Comparison of topologies

In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies.